320413 (20)

BE (4 ${ }^{\text {th }}$ Semester)
Examination, April-May, 2021
Branch : Civil
SURVEYING - II
Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : Part (A) of all questions is compulsory (2 marks
each). Answer any TWO questions ($2 \times 7=14$)
marks each) out of three from Part (B).

Unit-I

Part (A)

Q. 1. (a) (1) Distance of visible horizon for a point
having an elevation of 637.5 m is
(i) 6.735 km
(ii) 67.35 km
(iii) 10 km
(iv) 100 km
(2) Phase correction is done on :
(i) Pole signals
(ii) Beacons
(iii) Cylindrical signals

```

\section*{Part (B)}
```

(b) What is meant by a satellite station and reduction to centre ? Derive expression for

(3)

reducing the angles measured at the satellite stations to centre (Any One Case).
(c) The altitudes of two proposed stations A and B, 80 km apart are respectively 225 m and 550 m . The intervening obstructions situated at $\mathrm{C}, 40 \mathrm{~km}$ from A has an elevation of 285 m . Ascertain if A and B are intervisible, and if necessary, find by how much B should be raised so that the line of sight must nowhere be less than 3 m above the surface of the ground.7
(d) A steel tape is 30 m long at a temperature of $20^{\circ} \mathrm{C}$ when lying horizontally on the ground.

Its sectional area is 0.082 sq.cm, its mass

2 kg and coefficient of expansion 65×10^{-7}
per $1^{\circ} \mathrm{C}$. The tape is stretched over three
equal spans. Calculate actual length between
the end graduations under the following
conditions : temperature $40^{\circ} \mathrm{C}$, pull 180 N .

Take $E=2.07 \times 107 \mathrm{~N} / \mathrm{cm}^{2}$. 7

Unit-II

Part (A)

Q. 2. (a) (1) Systematic errors are always
(i) Cumulative
(ii) Compensating
(iii) Are always positive
(iv) Always negative
(ii) Theory of probability is applied to : 1
(i) Systematic errors
(ii) Accidental errors
(iii) True errors

Part (B)

(b) The following angles were measured at a station O so as to close the horizon :
$\angle A O B=83^{\circ} 42^{\prime} 28^{\prime \prime} .75$ weight 3
$\angle B O C=102^{\circ} 15^{\prime} 43^{\prime \prime} .26$ weight 2

(6)

$\angle C O D=94^{\circ} 38^{\prime} 27^{\prime \prime} .22$ weight 4
$\angle \mathrm{DOA}=79^{\circ} 23^{\prime} 23^{\prime \prime} .77$ weight 2 . Adjust the angles.
(c) The following are the measured values of equal weight for two connected triangles $A C D$ and BCD (Figure).

TWO CONNECTED TRIANGLES
A $68^{\circ} 12^{\prime} 24^{\prime \prime}$

B $\quad 52^{\circ} 28^{\prime} 46^{\prime \prime}$

C $128^{\circ} 16^{\prime} 30^{\prime \prime}$

320413 (20)

D $110^{\circ} 02^{\prime} 25^{\prime \prime}$
$C_{1} \quad 62^{\circ} 18^{\prime} 40^{\prime \prime}$
$C_{2} \quad 65^{\circ} 57^{\prime} 51^{\prime \prime}$
$\mathrm{D}_{1} \quad 49^{\circ} 28^{\prime} 59^{\prime \prime}$
$D_{2} \quad 16^{\circ} 33^{\prime} 28^{\prime \prime}$

Adjust the values of the angles.
(d) The following round of angles was observed

$$
\begin{aligned}
& \text { from central station to the surrounding } \\
& \text { stations of a triangulation survey : }
\end{aligned}
$$

$$
A=93^{\circ} 43^{\prime} 22^{\prime \prime} \text { weight } 3
$$

$$
B=74^{\circ} 32^{\prime} 39^{\prime \prime} \text { weight } 2
$$

(8)

$C=101^{\circ} 13^{\prime} 44^{\prime \prime}$ weight 2
$D=90^{\circ} 29^{\prime} 50^{\prime \prime}$ weight 3

In addition, one angle $(\overline{A+B})$ was measured
separately as combined angle with a mean
value of $168^{\circ} 16^{\prime} 06^{\prime \prime}$ (wt. 2). Determine the
most probable values of the angles A, B, C
and D.

Unit-III

Part (A)

Q. 3. (a) (i) When the line of sight is inclined and the staff is held vertically, the horizontal distance is given by 1

(9)

- $\frac{f}{i} \times S \cos ^{2} \theta+(f+d) \cos \theta$
- $\frac{f}{i} \times S \sin ^{2} \theta+(f+d) \sin \theta$
- $\frac{f}{i} \times S \cot ^{2} \theta+(f+d) \cot \theta$
(ii) As the distance between the tacheometer and staff increases, the
staff intercept by stadia hair 1
- Increases
- Decreases
- Remain constant
(Part - B)
(b) What are the constants of a tacheometer and how are they determined? 7

(d) The following observations were taken using
a tacheometer fitted with a anallatic lens, the
staff being held vertically.

Inst.	Height of	Staff	Vertical	Hair	Remarks
Station	axis	station	angle	readings	
P	1.45	BM	$-6^{\circ} 12^{\prime}$	$0.98,1.54,2.100$	RL of BM =
					384.25 m
P	1.45	Q	$+7^{\circ} 5^{\prime}$	$0.83,1.36,1.89$	
Q	1.57	R	$+12^{\circ} 21^{\prime}$	$1.89,2.48,3.07$	

Determine the distances $P Q$ and $Q R$, and
the RLs of P, Q and R.

Unit-IV

Part (A)
Q. 4. (a) Write the expression for length of line

between two stations of different elevations

as from an aerial photograph ?
(b) Prove that ratio of Tilt Displacement of a point not on the principal line to that of a point on a principal line $=$ Secant of angle at isocentre from principal line to the point.7
(c) Derive an expression for scale of a tilted photograph.
(d) Explain the calculation of amount of relief displacement?

Unit-V

Part (A)

Q. 5. (a) Give some examples of the applications of 'hydrographic surveying' ? 2

Part (B)

(b) What is meant by sounding? Explain the
method of observation of sounding from a
sounding boat, case - Ranging and one
angle from the boat?
7
(c) Explain the various equipments used for
taking soundings ? 7

320413 (20)
P.T.O.
(d) An observer taking soundings from a boat
wished to locate his position P . He measures
an angle to two A and $B, A P$ at right angles to

AB. If the measured angle APB is 29° and distance $A B$ is 550 m , calculate the boat position from A ?

